Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Biotechniques ; 73(5): 247-255, 2022 11.
Article in English | MEDLINE | ID: covidwho-2098927

ABSTRACT

Loop-mediated isothermal amplification (LAMP) has proven a robust and reliable nucleic acid amplification method that is well suited for simplified and rapid molecular diagnostics. Various approaches have emerged for sequence-specific detection of LAMP products, but with limitations to their widespread utility or applicability for single-nucleotide polymorphism detection and multiplexing. Here we demonstrate the use of simple hybridization probes (as used for qPCR) that enable simple multiplexing and SARS-CoV-2 variant typing in reverse-transcription LAMP. This approach requires no modification to the LAMP primers and is amenable to the detection of single-nucleotide polymorphisms and small sequence changes, which is usually difficult in LAMP. By extending LAMP's ability to be utilized for multitarget and single-base change detection, we hope to increase its potential to enable more and better molecular diagnostic testing.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques/methods , RNA, Viral
2.
PLoS One ; 17(4): e0254324, 2022.
Article in English | MEDLINE | ID: covidwho-1896432

ABSTRACT

Reverse transcription loop-mediated isothermal amplification (RT-LAMP) has emerged as a viable molecular diagnostic method to expand the breadth and reach of nucleic acid testing, particularly for SARS-CoV-2 detection and surveillance. While rapidly growing in prominence, RT-LAMP remains a relatively new method compared to the standard RT-qPCR, and contribution to our body of knowledge on designing LAMP primer sets and assays can have significant impact on its utility and adoption. Here we select and evaluate 18 LAMP primer sets for SARS-CoV-2 previously identified as sensitive ones under various conditions, comparing their speed and sensitivity with two LAMP formulations each with 2 reaction temperatures. We find that both LAMP formulations have some effects on the speed and detection sensitivity and identify several primer sets with similar high sensitivity for different SARS-CoV-2 gene targets. Significantly we observe a consistent sensitivity enhancement by combining primer sets for different targets, confirming and building on earlier work to create a simple, general approach to building better and more sensitive RT-LAMP assays.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
3.
PLoS One ; 17(5): e0268692, 2022.
Article in English | MEDLINE | ID: covidwho-1865343

ABSTRACT

Effective management of the COVID-19 pandemic requires widespread and frequent testing of the population for SARS-CoV-2 infection. Saliva has emerged as an attractive alternative to nasopharyngeal samples for surveillance testing as it does not require specialized personnel or materials for its collection and can be easily provided by the patient. We have developed a simple, fast, and sensitive saliva-based testing workflow that requires minimal sample treatment and equipment. After sample inactivation, RNA is quickly released and stabilized in an optimized buffer, followed by reverse transcription loop-mediated isothermal amplification (RT-LAMP) and detection of positive samples using a colorimetric and/or fluorescent readout. The workflow was optimized using 1,670 negative samples collected from 172 different individuals over the course of 6 months. Each sample was spiked with 50 copies/µL of inactivated SARS-CoV-2 virus to monitor the efficiency of viral detection. Using pre-defined clinical samples, the test was determined to be 100% specific and 97% sensitive, with a limit of detection of 39 copies/mL. The method was successfully implemented in a CLIA laboratory setting for workplace surveillance and reporting. From April 2021-February 2022, more than 30,000 self-collected samples from 755 individuals were tested and 85 employees tested positive mainly during December and January, consistent with high infection rates in Massachusetts and nationwide.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Pandemics , RNA, Viral/genetics , Saliva , Sensitivity and Specificity , Workflow , Workplace
4.
PLoS One ; 17(3): e0259610, 2022.
Article in English | MEDLINE | ID: covidwho-1759938

ABSTRACT

The ongoing SARS-CoV-2 pandemic has necessitated a dramatic increase in our ability to conduct molecular diagnostic tests, as accurate detection of the virus is critical in preventing its spread. However, SARS-CoV-2 variants continue to emerge, with each new variant potentially affecting widely-used nucleic acid amplification diagnostic tests. RT-LAMP has been adopted as a quick, inexpensive diagnostic alternative to RT-qPCR, but as a newer method, has not been studied as thoroughly. Here we interrogate the effect of SARS-CoV-2 sequence mutations on RT-LAMP amplification, creating 523 single point mutation "variants" covering every position of the LAMP primers in 3 SARS-CoV-2 assays and analyzing their effects with over 4,500 RT-LAMP reactions. Remarkably, we observed only minimal effects on amplification speed and no effect on detection sensitivity at positions equivalent to those that significantly impact RT-qPCR assays. We also created primer sets targeting a specific short deletion and observed that LAMP is able to amplify even with a primer containing multiple consecutive mismatched bases, albeit with reduced speed and sensitivity. This highlights RT-LAMP as a robust technique for viral RNA detection that can tolerate most mutations in the primer regions. Additionally, where variant discrimination is desired, we describe the use of molecular beacons to sensitively distinguish and identify variant RNA sequences carrying short deletions. Together these data add to the growing body of knowledge on the utility of RT-LAMP and increase its potential to further our ability to conduct molecular diagnostic tests outside of the traditional clinical laboratory environment.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
J Biomol Tech ; 32(3): 228-275, 2021 09.
Article in English | MEDLINE | ID: covidwho-1687373

ABSTRACT

As the second year of the COVID-19 pandemic begins, it remains clear that a massive increase in the ability to test for SARS-CoV-2 infections in a myriad of settings is critical to controlling the pandemic and to preparing for future outbreaks. The current gold standard for molecular diagnostics is the polymerase chain reaction (PCR), but the extraordinary and unmet demand for testing in a variety of environments means that both complementary and supplementary testing solutions are still needed. This review highlights the role that loop-mediated isothermal amplification (LAMP) has had in filling this global testing need, providing a faster and easier means of testing, and what it can do for future applications, pathogens, and the preparation for future outbreaks. This review describes the current state of the art for research of LAMP-based SARS-CoV-2 testing, as well as its implications for other pathogens and testing. The authors represent the global LAMP (gLAMP) Consortium, an international research collective, which has regularly met to share their experiences on LAMP deployment and best practices; sections are devoted to all aspects of LAMP testing, including preanalytic sample processing, target amplification, and amplicon detection, then the hardware and software required for deployment are discussed, and finally, a summary of the current regulatory landscape is provided. Included as well are a series of first-person accounts of LAMP method development and deployment. The final discussion section provides the reader with a distillation of the most validated testing methods and their paths to implementation. This review also aims to provide practical information and insight for a range of audiences: for a research audience, to help accelerate research through sharing of best practices; for an implementation audience, to help get testing up and running quickly; and for a public health, clinical, and policy audience, to help convey the breadth of the effect that LAMP methods have to offer.


Subject(s)
COVID-19 , Nucleic Acid Amplification Techniques , SARS-CoV-2 , COVID-19/diagnosis , COVID-19 Nucleic Acid Testing , Humans , Molecular Diagnostic Techniques , Pandemics , RNA, Viral , SARS-CoV-2/isolation & purification
6.
Journal of biomolecular techniques : JBT ; 32(3):180-185, 2021.
Article in English | EuropePMC | ID: covidwho-1619311

ABSTRACT

Frequent and accessible testing is a critical tool to contain the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To develop low-cost rapid tests, many researchers have used reverse transcription loop-mediated isothermal amplification (RT-LAMP) with fluorescent readout. Fluorescent LAMP-based assays can be performed using cost-effective, portable, isothermal instruments that are simpler to use and more rugged than polymerase chain reaction (PCR) instruments. However, false-positive results due to nonspecific priming and amplification have been reported for a number of LAMP-based assays. In this report, we implemented a RT-LAMP assay for SARS-CoV-2 on a portable isothermal fluorimeter and a traditional thermocycler;nonspecific amplification was not observed using the thermocycler but did occur frequently with the isothermal fluorimeter. We explored 4 strategies to optimize the SARS-CoV-2 RT-LAMP assay for use with an isothermal fluorimeter and found that overlaying the reaction with mineral oil and including the enzyme Tte UvrD helicase in the reaction eliminated the problem. We anticipate these results and strategies will be relevant for use with a wide range of portable isothermal instruments.

7.
Nat Commun ; 12(1): 1660, 2021 03 12.
Article in English | MEDLINE | ID: covidwho-1132065

ABSTRACT

In less than nine months, the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) killed over a million people, including >25,000 in New York City (NYC) alone. The COVID-19 pandemic caused by SARS-CoV-2 highlights clinical needs to detect infection, track strain evolution, and identify biomarkers of disease course. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs and a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, viral, and microbial profiling. We applied these methods to clinical specimens gathered from 669 patients in New York City during the first two months of the outbreak, yielding a broad molecular portrait of the emerging COVID-19 disease. We find significant enrichment of a NYC-distinctive clade of the virus (20C), as well as host responses in interferon, ACE, hematological, and olfaction pathways. In addition, we use 50,821 patient records to find that renin-angiotensin-aldosterone system inhibitors have a protective effect for severe COVID-19 outcomes, unlike similar drugs. Finally, spatial transcriptomic data from COVID-19 patient autopsy tissues reveal distinct ACE2 expression loci, with macrophage and neutrophil infiltration in the lungs. These findings can inform public health and may help develop and drive SARS-CoV-2 diagnostic, prevention, and treatment strategies.


Subject(s)
COVID-19/genetics , COVID-19/virology , SARS-CoV-2/genetics , Adult , Aged , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Antiviral Agents/pharmacology , COVID-19/epidemiology , COVID-19 Nucleic Acid Testing , Drug Interactions , Female , Gene Expression Profiling , Genome, Viral , HLA Antigens/genetics , Host Microbial Interactions/drug effects , Host Microbial Interactions/genetics , Humans , Male , Middle Aged , Molecular Diagnostic Techniques , New York City/epidemiology , Nucleic Acid Amplification Techniques , Pandemics , RNA-Seq , SARS-CoV-2/classification , SARS-CoV-2/drug effects , COVID-19 Drug Treatment
8.
Biotechniques ; 70(3): 167-174, 2021 03.
Article in English | MEDLINE | ID: covidwho-1063262

ABSTRACT

The ongoing pandemic has demonstrated the utility of widespread surveillance and diagnostic detection of the novel SARS-CoV-2. Reverse-transcription loop-mediated isothermal amplification (RT-LAMP) has enabled broader testing, but current LAMP tests only detect single targets and require separate reactions for controls. With flu season in the Northern Hemisphere, the ability to screen for multiple targets will be increasingly important, and the ability to include internal controls in RT-LAMP allows for improved efficiency. Here we describe multiplexed RT-LAMP with four targets (SARS-CoV-2, influenza A, influenza B, human RNA) in a single reaction using real-time and end point fluorescence detection. Such increased functionality of RT-LAMP will enable even broader adoption of this molecular testing approach and aid in the fight against this public health threat.


Subject(s)
Influenza A virus/genetics , Influenza B virus/genetics , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , RNA, Viral/genetics , SARS-CoV-2/genetics , COVID-19 Nucleic Acid Testing/methods , DNA Primers/genetics , Fluorescence , RNA, Viral/analysis , Reverse Transcription , Sensitivity and Specificity
9.
Open Forum Infect Dis ; 8(2): ofaa631, 2021 Feb.
Article in English | MEDLINE | ID: covidwho-990785

ABSTRACT

BACKGROUND: Amid the enduring pandemic, there is an urgent need for expanded access to rapid, sensitive, and inexpensive coronavirus disease 2019 (COVID-19) testing worldwide without specialized equipment. We developed a simple test that uses colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect severe acute resrpiratory syndrome coronavirus 2 (SARS-CoV-2) in 40 minutes from sample collection to result. METHODS: We tested 135 nasopharyngeal specimens from patients evaluated for COVID-19 infection at Massachusetts General Hospital. Specimens were either added directly to RT-LAMP reactions, inactivated by a combined chemical and heat treatment step, or inactivated then purified with a silica particle-based concentration method. Amplification was performed with 2 SARS-CoV-2-specific primer sets and an internal specimen control; the resulting color change was visually interpreted. RESULTS: Direct RT-LAMP testing of unprocessed specimens could only reliably detect samples with abundant SARS-CoV-2 (>3 000 000 copies/mL), with sensitivities of 50% (95% CI, 28%-72%) and 59% (95% CI, 43%-73%) in samples collected in universal transport medium and saline, respectively, compared with quantitative polymerase chain reaction (qPCR). Adding an upfront RNase inactivation step markedly improved the limit of detection to at least 25 000 copies/mL, with 87.5% (95% CI, 72%-95%) sensitivity and 100% specificity (95% CI, 87%-100%). Using both inactivation and purification increased the assay sensitivity by 10-fold, achieving a limit of detection comparable to commercial real-time PCR-based diagnostics. CONCLUSIONS: By incorporating a fast and inexpensive sample preparation step, RT-LAMP accurately detects SARS-CoV-2 with limited equipment for about US$6 per sample, making this a potentially ideal assay to increase testing capacity, especially in resource-limited settings.

10.
PLoS One ; 15(11): e0238612, 2020.
Article in English | MEDLINE | ID: covidwho-902011

ABSTRACT

BACKGROUND: Rapid and extensive testing of large parts of the population and specific subgroups is crucial for proper management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections and decision-making in times of a pandemic outbreak. However, point-of-care (POC) testing in places such as emergency units, outpatient clinics, airport security points or the entrance of any public building is a major challenge. The need for thermal cycling and nucleic acid isolation hampers the use of standard PCR-based methods for this purpose. METHODS: To avoid these obstacles, we tested PCR-independent methods for the detection of SARS-CoV-2 RNA from primary material (nasopharyngeal swabs) including reverse transcription loop-mediated isothermal amplification (RT-LAMP) and specific high-sensitivity enzymatic reporter unlocking (SHERLOCK). RESULTS: Whilst specificity of standard RT-LAMP assays appears to be satisfactory, sensitivity does not reach the current gold-standard quantitative real-time polymerase chain reaction (qPCR) assays yet. We describe a novel multiplexed RT-LAMP approach and validate its sensitivity on primary samples. This approach allows for fast and reliable identification of infected individuals. Primer optimization and multiplexing helps to increase sensitivity significantly. In addition, we directly compare and combine our novel RT-LAMP assays with SHERLOCK. CONCLUSION: In summary, this approach reveals one-step multiplexed RT-LAMP assays as a prime-option for the development of easy and cheap POC test kits.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , RNA, Viral/metabolism , Betacoronavirus/isolation & purification , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Coronavirus Infections/virology , Humans , Nasopharynx/virology , Pandemics , Pneumonia, Viral/virology , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
11.
bioRxiv ; 2020 May 01.
Article in English | MEDLINE | ID: covidwho-823190

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused thousands of deaths worldwide, including >18,000 in New York City (NYC) alone. The sudden emergence of this pandemic has highlighted a pressing clinical need for rapid, scalable diagnostics that can detect infection, interrogate strain evolution, and identify novel patient biomarkers. To address these challenges, we designed a fast (30-minute) colorimetric test (LAMP) for SARS-CoV-2 infection from naso/oropharyngeal swabs, plus a large-scale shotgun metatranscriptomics platform (total-RNA-seq) for host, bacterial, and viral profiling. We applied both technologies across 857 SARS-CoV-2 clinical specimens and 86 NYC subway samples, providing a broad molecular portrait of the COVID-19 NYC outbreak. Our results define new features of SARS-CoV-2 evolution, nominate a novel, NYC-enriched viral subclade, reveal specific host responses in interferon, ACE, hematological, and olfaction pathways, and examine risks associated with use of ACE inhibitors and angiotensin receptor blockers. Together, these findings have immediate applications to SARS-CoV-2 diagnostics, public health, and new therapeutic targets.

12.
Biotechniques ; 69(3): 178-185, 2020 09.
Article in English | MEDLINE | ID: covidwho-636778

ABSTRACT

Loop-mediated isothermal amplification (LAMP) is a versatile technique for detection of target DNA and RNA, enabling rapid molecular diagnostic assays with minimal equipment. The global SARS-CoV-2 pandemic has presented an urgent need for new and better diagnostic methods, with colorimetric LAMP utilized in numerous studies for SARS-CoV-2 detection. However, the sensitivity of colorimetric LAMP in early reports has been below that of the standard RT-qPCR tests, and we sought to improve performance. Here we report the use of guanidine hydrochloride and combined primer sets to increase speed and sensitivity in colorimetric LAMP, bringing this simple method up to the standards of sophisticated techniques and enabling accurate, high-throughput diagnostics.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Guanidine , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , COVID-19 Testing , Clinical Laboratory Techniques/standards , Colorimetry , Coronavirus Infections/diagnosis , Humans , Molecular Diagnostic Techniques/standards , Nucleic Acid Amplification Techniques/standards , Phenolsulfonphthalein , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL